Ischemic Stroke Lesion Segmentation in Multi-Spectral MR Images with Support Vector Machine Classifiers

Oskar Maier, Matthias Wilms, Janina von der Gablentz, U Krämer, Heinz Handels

Abstract

Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer’s discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature’s and MR sequence’s contribution.
OriginalspracheEnglisch
TitelMedical Imaging 2014: Computer-Aided Diagnosis
Redakteure/-innenGeorgia D. Tourassi, Samuel G. Armato
Seitenumfang12
Band9035
Herausgeber (Verlag)SPIE
Erscheinungsdatum24.03.2014
Seiten903504-903504-12
ISBN (Print)9781510600201
DOIs
PublikationsstatusVeröffentlicht - 24.03.2014
VeranstaltungSPIE Medical Imaging 2014: Computer-Aided Diagnosis
- San Diego, USA / Vereinigte Staaten
Dauer: 15.02.201420.02.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ischemic Stroke Lesion Segmentation in Multi-Spectral MR Images with Support Vector Machine Classifiers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren