Interpretable cardiac anatomy modeling using variational mesh autoencoders

Marcel Beetz*, Jorge Corral Acero, Abhirup Banerjee, Ingo Eitel, Ernesto Zacur, Torben Lange, Thomas Stiermaier, Ruben Evertz, Sören J. Backhaus, Holger Thiele, Alfonso Bueno-Orovio, Pablo Lamata, Andreas Schuster, Vicente Grau

*Korrespondierende/r Autor/-in für diese Arbeit
3 Zitate (Scopus)

Abstract

Cardiac anatomy and function vary considerably across the human population with important implications for clinical diagnosis and treatment planning. Consequently, many computer-based approaches have been developed to capture this variability for a wide range of applications, including explainable cardiac disease detection and prediction, dimensionality reduction, cardiac shape analysis, and the generation of virtual heart populations. In this work, we propose a variational mesh autoencoder (mesh VAE) as a novel geometric deep learning approach to model such population-wide variations in cardiac shapes. It embeds multi-scale graph convolutions and mesh pooling layers in a hierarchical VAE framework to enable direct processing of surface mesh representations of the cardiac anatomy in an efficient manner. The proposed mesh VAE achieves low reconstruction errors on a dataset of 3D cardiac meshes from over 1,000 patients with acute myocardial infarction, with mean surface distances between input and reconstructed meshes below the underlying image resolution. We also find that it outperforms a voxelgrid-based deep learning benchmark in terms of both mean surface distance and Hausdorff distance while requiring considerably less memory. Furthermore, we explore the quality and interpretability of the mesh VAE's latent space and showcase its ability to improve the prediction of major adverse cardiac events over a clinical benchmark. Finally, we investigate the method's ability to generate realistic virtual populations of cardiac anatomies and find good alignment between the synthesized and gold standard mesh populations in terms of multiple clinical metrics.

OriginalspracheEnglisch
Aufsatznummer983868
ZeitschriftFrontiers in Cardiovascular Medicine
Jahrgang9
ISSN2297-055X
DOIs
PublikationsstatusVeröffentlicht - 22.12.2022

Strategische Forschungsbereiche und Zentren

  • Zentren: Universitäres Herzzentrum Lübeck (UHZL)

DFG-Fachsystematik

  • 2.22-12 Kardiologie, Angiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Interpretable cardiac anatomy modeling using variational mesh autoencoders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren