Improved Reconstruction of 4D MSCT Image Data and Motion Analysis of Lung Tumors Using Non-linear Registration Methods

Heinz Handels, R. Werner, T. Frenzel, D. Säring, W. Lu, D. Low, J. Ehrhardt

Abstract

In this paper, a non-linear registration method is used to interpolate and reconstruct (3D+t) CT data sets from multislice CT scans, which are collected simultaneously with digital spirometry. The non-linear registration approach applied is an optical flow based method. It estimates a velocity field between successive scans, which is used to reconstruct a 4D CT data set by interpolating data at user-defined tidal volumes. A qualitative and quantitative evaluation showed that artifacts can be reduced significantly by this technique. The comparison between slice changes inside a data segment and slice changes at segment borders enables a quantitative evaluation. For four patient data sets the artifacts could be reduced by 31.8%, 29.9%, 30.7% and 41.6% (mean over all data segments). Furthermore, the reconstructed 4D CT data sets are used for studying the motion of lung tumors and inner organs during the respiratory cycle. The reconstructed 4D data sets of 4 patients with lung tumors were used to quantify the individual tumor and organ movements during a breathing cycle. Based on the determined velocity field, trajectories of landmarks and surface points are analyzed. The motion of the lung tumor center in three orthogonal directions can be displayed and probabilities of lung tumor appearance are computed in 3D.

OriginalspracheEnglisch
TitelWorld Congress on Medical Physics and Biomedical Engineering 2006
Seitenumfang4
Band14
ErscheinungsortBerlin, Heidelberg
Herausgeber (Verlag)Springer Verlag
Erscheinungsdatum01.01.2007
Auflage1
Seiten 2288-2291
ISBN (Print)978-3-540-36839-7
ISBN (elektronisch)978-3-540-36841-0
DOIs
PublikationsstatusVeröffentlicht - 01.01.2007
Veranstaltung10th World Congress on Medical Physics and Biomedical Engineering
- Seoul, Südkorea
Dauer: 27.08.200601.09.2006
Konferenznummer: 163739

Fingerprint

Untersuchen Sie die Forschungsthemen von „Improved Reconstruction of 4D MSCT Image Data and Motion Analysis of Lung Tumors Using Non-linear Registration Methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren