Image Features for Brain Lesion Segmentation Using Random Forests

Oskar Maier, Matthias Wilms, Heinz Handels

Abstract

From clinical practice as well as research methods arises the need for accurate, reproducible and reliable segmentation of pathological areas from brain MR scans. This paper describes a set of hand-selected, voxel-based image features highly suitable for the tissue discrimination task. Embedded in a random decision forest framework, the proposed method was applied to sub-acute ischemic stroke (ISLES 2015 - SISS), acute ischemic stroke (ISLES 2015 - SPES) and glioma (BRATS 2015) segmentation with only minor adaptation. For all of these three challenges, our generic approach received high ranks, among them a second place. The outcome underlines the robustness of our features for segmentation in brain MR, while simultaneously stressing the necessity for highly specialized solution to achieve state-of-the-art performance.
OriginalspracheEnglisch
TitelBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
Redakteure/-innenAlessandro Crimi, Bjoern Menze, Oskar Maier, Mauricio Reyes, Heinz Handels
Seitenumfang11
Band9556
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum05.10.2016
Seiten119 - 130
ISBN (Print)978-3-319-30857-9
ISBN (elektronisch)978-3-319-30858-6
DOIs
PublikationsstatusVeröffentlicht - 05.10.2016
VeranstaltungBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, First International Workshop, Brainles 2015, Held in Conjuction with MICCAI 2015
- Munich, Deutschland
Dauer: 05.10.201509.10.2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Image Features for Brain Lesion Segmentation Using Random Forests“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren