Identification of texture MRI brain abnormalities on first-episode psychosis and clinical high-risk subjects using explainable artificial intelligence

Alexandra I. Korda*, Christina Andreou, Helena Victoria Rogg, Mihai Avram, Anne Ruef, Christos Davatzikos, Nikolaos Koutsouleris, Stefan Borgwardt

*Korrespondierende/r Autor/-in für diese Arbeit
3 Zitate (Scopus)

Abstract

Structural MRI studies in first-episode psychosis and the clinical high-risk state have consistently shown volumetric abnormalities. Aim of the present study was to introduce radiomics texture features in identification of psychosis. Radiomics texture features describe the interrelationship between voxel intensities across multiple spatial scales capturing the hidden information of underlying disease dynamics in addition to volumetric changes. Structural MR images were acquired from 77 first-episode psychosis (FEP) patients, 58 clinical high-risk subjects with no later transition to psychosis (CHR_NT), 15 clinical high-risk subjects with later transition (CHR_T), and 44 healthy controls (HC). Radiomics texture features were extracted from non-segmented images, and two-classification schemas were performed for the identification of FEP vs. HC and FEP vs. CHR_NT. The group of CHR_T was used as external validation in both schemas. The classification of a subject’s clinical status was predicted by importing separately (a) the difference of entropy feature map and (b) the contrast feature map, resulting in classification balanced accuracy above 72% in both analyses. The proposed framework enhances the classification decision for FEP, CHR_NT, and HC subjects, verifies diagnosis-relevant features and may potentially contribute to identification of structural biomarkers for psychosis, beyond and above volumetric brain changes.

OriginalspracheEnglisch
Aufsatznummer481
ZeitschriftTranslational Psychiatry
Jahrgang12
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 12.2022

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)

DFG-Fachsystematik

  • 206-08 Kognitive und Systemische Humanneurowissenschaften
  • 206-10 Klinische Psychiatrie, Psychotherapie und Kinder- und Jugendpsychiatrie
  • 206-09 Biologische Psychiatrie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identification of texture MRI brain abnormalities on first-episode psychosis and clinical high-risk subjects using explainable artificial intelligence“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren