Abstract
The vast majority of 3D medical images lacks detailed image-based expert annotations. The ongoing advances of deep convolutional neural networks clearly demonstrate the benefit of supervised learning to successfully extract relevant anatomical information and aid image-based analysis and interventions, but it heavily relies on labeled data. Self-supervised learning, that requires no expert labels, provides an appealing way to discover data-inherent patterns and leverage anatomical information freely available from medical images themselves. In this work, we propose a new approach to train effective convolutional feature extractors based on a new concept of image-intrinsic spatial offset relations with an auxiliary heatmap regression loss. The learned features successfully capture semantic, anatomical information and enable state-of-the-art accuracy for a k-NN based one-shot segmentation task without any subsequent fine-tuning.
Originalsprache | Englisch |
---|---|
Titel | MICCAI 2019: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 |
Redakteure/-innen | Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan |
Seitenumfang | 9 |
Band | 11769 LNCS |
Herausgeber (Verlag) | Springer, Cham |
Erscheinungsdatum | 10.10.2019 |
Seiten | 649-657 |
ISBN (Print) | 978-3-030-32225-0 |
ISBN (elektronisch) | 978-3-030-32226-7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 10.10.2019 |
Veranstaltung | 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention - Shenzhen, China Dauer: 13.10.2019 → 17.10.2019 Konferenznummer: 232939 |