How to Automate Neural Net Based Learning

Roland Linder, Siegfried J. Pöppl

Abstract

Although neural networks have many appealing properties, yet there is neither a systematic way how to set up the topology of a neural network nor how to determine its various learning parameters. Thus an expert is needed for fine tuning. If neural network applications should not be realisable only for publications but in real life, fine tuning must become unnecessary. In the present paper an approach is demonstrated fulfilling this demand. Moreover referring to six medical classification and approximation problems of the PROBEN1 benchmark collection this approach will be shown even to outperform fine tuned networks.

OriginalspracheEnglisch
TitelMLDM 2001: Machine Learning and Data Mining in Pattern Recognition
Seitenumfang11
Band2123
Herausgeber (Verlag)Springer Berlin Heidelberg
Erscheinungsdatum01.01.2001
Seiten206-216
ISBN (Print)978-3-540-42359-1
ISBN (elektronisch)978-3-540-44596-8
DOIs
PublikationsstatusVeröffentlicht - 01.01.2001
Veranstaltung2nd International Workshop on Machine Learning and Data Mining in Pattern Recognition
- Leipzig, Deutschland
Dauer: 25.07.200127.07.2001
Konferenznummer: 104830

Fingerprint

Untersuchen Sie die Forschungsthemen von „How to Automate Neural Net Based Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren