How rigid the finite ultrametric spaces can be?

O. Dovgoshey, E. Petrov*, H. M. Teichert

*Korrespondierende/r Autor/-in für diese Arbeit
4 Zitate (Scopus)

Abstract

A metric space X is rigid if the isometry group of X is trivial. The finite ultrametric spaces X with |X| ≥ 2 are not rigid since for every such X there is a self-isometry having exactly |X|−2 fixed points. Using the representing trees we characterize the finite ultrametric spaces X for which every self-isometry has at least |X|−2 fixed points. Some other extremal properties of such spaces and related graph theoretical characterizations are also obtained.

OriginalspracheEnglisch
ZeitschriftJournal of Fixed Point Theory and Applications
Jahrgang19
Ausgabenummer2
Seiten (von - bis)1083-1102
Seitenumfang20
ISSN1661-7738
DOIs
PublikationsstatusVeröffentlicht - 01.06.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „How rigid the finite ultrametric spaces can be?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren