TY - JOUR
T1 - High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells
AU - Gilmartin, Allissia A.
AU - Lamp, Benjamin
AU - Rümenapf, Till
AU - Persson, Mats A.A.
AU - Rey, Félix A.
AU - Krey, Thomas
N1 - Funding Information:
A.A.G. benefited from a Fulbright-Hays fellowship. This work was supported by the ANRS and the ANR grant ANR-2010-BLAN-1211 01 to F.A.R., in addition to the recurrent Institut Pasteur and CNRS support to F.A.R.; the Swedish Foundation for Strategic Research (Cell Factory and Infection &Vaccines programs), the Swedish Cancer Society and the Swedish Research Council to M.A.A.P. Funding to pay the Open Access publication charges for this article was provided by the Institut Pasteur.
PY - 2012/2
Y1 - 2012/2
N2 - Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (VH) and light (VL) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of VH and VL domains, further validating the here-reported expression system.
AB - Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (VH) and light (VL) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of VH and VL domains, further validating the here-reported expression system.
UR - http://www.scopus.com/inward/record.url?scp=84856289745&partnerID=8YFLogxK
U2 - 10.1093/protein/gzr058
DO - 10.1093/protein/gzr058
M3 - Journal articles
C2 - 22160929
AN - SCOPUS:84856289745
SN - 1741-0126
VL - 25
SP - 59
EP - 66
JO - Protein Engineering, Design and Selection
JF - Protein Engineering, Design and Selection
IS - 2
ER -