Head Movement Detection from Radial k-Space Lines using Convolutional Neural Networks - A Digital Phantom Study

Maximilian Wattenberg, Jannis Hagenah, Constantin Schareck, Floris Ernst, Martin A. Koch

Abstract

Magnetic resonance imaging-guided linear particle accelerators use reconstructed images to adapt the radiation beam to the tumor location. Image-based approaches are relatively slow, causing healthy tissue to be irradiated upon subject movement. This study targets on the use of con- volutional neural networks to estimate rigid patient movements directly from few acquired radial k-space lines. Thus, abrupt patient movements were simulated in image data of a head. De- pending on the number of acquired spokes after movement, the network quantiﰂed this motion precisely. These ﰂrst results suggest that neural network-based navigators can help accelerating beam guidance in radiotherapy.
OriginalspracheEnglisch
Seitenumfang4
PublikationsstatusVeröffentlicht - 2019
VeranstaltungAnnual Meeting of the International Society of Magnetic Resonance in Medicine 2019
- Palais des congrès de Montréal, Montréal, Kanada
Dauer: 11.05.201916.01.2021

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressAnnual Meeting of the International Society of Magnetic Resonance in Medicine 2019
KurztitelISMRM 2019
Land/GebietKanada
OrtMontréal
Zeitraum11.05.1916.01.21

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Head Movement Detection from Radial k-Space Lines using Convolutional Neural Networks - A Digital Phantom Study“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren