Abstract
Magnetic resonance imaging-guided linear particle accelerators use reconstructed images to adapt the radiation beam to the tumor location. Image-based approaches are relatively slow, causing healthy tissue to be irradiated upon subject movement. This study targets on the use of con- volutional neural networks to estimate rigid patient movements directly from few acquired radial k-space lines. Thus, abrupt patient movements were simulated in image data of a head. De- pending on the number of acquired spokes after movement, the network quantiﰂed this motion precisely. These ﰂrst results suggest that neural network-based navigators can help accelerating beam guidance in radiotherapy.
Originalsprache | Englisch |
---|---|
Seitenumfang | 4 |
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | Annual Meeting of the International Society of Magnetic Resonance in Medicine 2019 - Palais des congrès de Montréal, Montréal, Kanada Dauer: 11.05.2019 → 16.01.2021 |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | Annual Meeting of the International Society of Magnetic Resonance in Medicine 2019 |
---|---|
Kurztitel | ISMRM 2019 |
Land/Gebiet | Kanada |
Ort | Montréal |
Zeitraum | 11.05.19 → 16.01.21 |
Strategische Forschungsbereiche und Zentren
- Forschungsschwerpunkt: Biomedizintechnik