Hardware-accelerated pose estimation for embedded systems using Vivado HLS

J. M. Joseph, T. Winker, K. Ehlers, C. Blochwitz, T. Pionteck

Abstract

The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.
OriginalspracheEnglisch
Titel2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)
Seitenumfang7
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.11.2016
Seiten1-7
Aufsatznummer126407
ISBN (Print)978-1-5090-3708-7
ISBN (elektronisch)978-1-5090-3707-0
DOIs
PublikationsstatusVeröffentlicht - 01.11.2016
Veranstaltung2016 International Conference on Reconfigurable Computing and FPGAs - Cancun, Mexico
Dauer: 30.11.201602.12.2016
Konferenznummer: 126407

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hardware-accelerated pose estimation for embedded systems using Vivado HLS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren