Haplotyping with missing data via perfect path phylogenies

Jens Gramm, Till Nierhoff, Roded Sharan, Till Tantau*

*Korrespondierende/r Autor/-in für diese Arbeit
9 Zitate (Scopus)

Abstract

Computational methods for inferring haplotype information from genotype data are used in studying the association between genomic variation and medical condition. Recently, Gusfield proposed a haplotype inference method that is based on perfect phylogeny principles. A fundamental problem arises when one tries to apply this approach in the presence of missing genotype data, which is common in practice. We show that the resulting theoretical problem is NP-hard even in very restricted cases. To cope with missing data, we introduce a variant of haplotyping via perfect phylogeny in which a path phylogeny is sought. Searching for perfect path phylogenies is strongly motivated by the characteristics of human genotype data: 70% of real instances that admit a perfect phylogeny also admit a perfect path phylogeny. Our main result is a fixed-parameter algorithm for haplotyping with missing data via perfect path phylogenies. We also present a simple linear-time algorithm for the problem on complete data.

OriginalspracheEnglisch
ZeitschriftDiscrete Applied Mathematics
Jahrgang155
Ausgabenummer6-7
Seiten (von - bis)788-805
Seitenumfang18
ISSN0166-218X
DOIs
PublikationsstatusVeröffentlicht - 01.04.2007

Fingerprint

Untersuchen Sie die Forschungsthemen von „Haplotyping with missing data via perfect path phylogenies“. Zusammen bilden sie einen einzigartigen Fingerprint.
  • Komplexität von Haplotypisierungsproblemen

    Tantau, T. (Projektleiter*in (PI)), Schnoor, I. (Beteiligte*r Wissenschaftler*in), Elberfeld, M. (Beteiligte*r Wissenschaftler*in), Kuczewski, J. (Beteiligte*r Wissenschaftler*in) & Pohlmann, J. (Beteiligte Person)

    01.01.0531.12.10

    Projekt: DFG-ProjekteDFG Einzelförderungen

Zitieren