Guerrilla Performance Analysis for Robot Swarms: Degrees of Collaboration and Chains of Interference Events

Heiko Hamann*, Till Aust, Andreagiovanni Reina

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Scalability is a key feature of swarm robotics. Hence, measuring performance depending on swarm size is important to check the validity of the design. Performance diagrams have generic qualities across many different application scenarios. We summarize these findings and condense them in a practical performance analysis guide for swarm robotics. We introduce three general classes of performance: linear increase, saturation, and increase/decrease. As the performance diagrams may contain rich information about underlying processes, such as the degree of collaboration and chains of interference events in crowded situations, we discuss options for quickly devising hypotheses about the underlying robot behaviors. The validity of our performance analysis guide is then made plausible in a number of simple examples based on models and simulations.

OriginalspracheEnglisch
TitelANTS 2020: Swarm Intelligence
Redakteure/-innenMarco Dorigo, Thomas Stützle, Maria J. Blesa, Christian Blum, Heiko Hamann, Mary Katherine Heinrich, Volker Strobel
Seitenumfang14
Band12421 LNCS
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum23.10.2020
Seiten134-147
ISBN (Print)978-3-030-60375-5
ISBN (elektronisch)978-3-030-60376-2
DOIs
PublikationsstatusVeröffentlicht - 23.10.2020
Veranstaltung12th International Conference on Swarm Intelligence - Barcelona, Spanien
Dauer: 26.10.202028.10.2020
Konferenznummer: 250669

Fingerprint

Untersuchen Sie die Forschungsthemen von „Guerrilla Performance Analysis for Robot Swarms: Degrees of Collaboration and Chains of Interference Events“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren