Abstract
In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.
Originalsprache | Englisch |
---|---|
Titel | 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA) |
Seitenumfang | 6 |
Herausgeber (Verlag) | IEEE |
Erscheinungsdatum | 01.12.2016 |
Seiten | 1-6 |
Aufsatznummer | 7820985 |
ISBN (Print) | 978-1-4673-8911-2 |
ISBN (elektronisch) | 978-1-4673-8910-5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.12.2016 |
Veranstaltung | 6th International Conference on Image Processing Theory, Tools and Applications - Oulu, Finnland Dauer: 12.12.2016 → 15.12.2016 Konferenznummer: 125997 |