GPU Based Affine Linear Image Registration using Normalized Gradient Fields

Florian Tramnitzke, Jan Rühaak, Lars König, Jan Modersitzki, Harald Köstler

Abstract

We present a CUDA implementation of a complete registra-tion algorithm, which is capable of aligning two multimodal images, us-ing affine linear transformations and normalized gradient fields. Through the extensive use of different memory types, well handled thread man-agement and efficient hardware interpolation we gained fast executing code. Contrary to the common technique of reducing kernel calls, we significantly increased performance by rearranging a single kernel into multiple smaller ones. Our GPU implementation achieved a speedup of up to 11 compared to parallelized CPU code. Matching two 512 × 512 pixel images is performed in 37 milliseconds, thus making state-of-the-art multimodal image registration available in real time scenarios.
OriginalspracheEnglisch
Seiten5-14
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 01.09.2014
VeranstaltungMICCAI 2014 Workshop on Deep Brain Stimulation Methodological Challenges - Boston, USA / Vereinigte Staaten
Dauer: 14.09.201418.09.2014
http://miccai2014.org/workshop_program.html

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressMICCAI 2014 Workshop on Deep Brain Stimulation Methodological Challenges
Land/GebietUSA / Vereinigte Staaten
OrtBoston
Zeitraum14.09.1418.09.14
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „GPU Based Affine Linear Image Registration using Normalized Gradient Fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren