Abstract
We present a CUDA implementation of a complete registra-tion algorithm, which is capable of aligning two multimodal images, us-ing affine linear transformations and normalized gradient fields. Through the extensive use of different memory types, well handled thread man-agement and efficient hardware interpolation we gained fast executing code. Contrary to the common technique of reducing kernel calls, we significantly increased performance by rearranging a single kernel into multiple smaller ones. Our GPU implementation achieved a speedup of up to 11 compared to parallelized CPU code. Matching two 512 × 512 pixel images is performed in 37 milliseconds, thus making state-of-the-art multimodal image registration available in real time scenarios.
Originalsprache | Englisch |
---|---|
Seiten | 5-14 |
Seitenumfang | 10 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.09.2014 |
Veranstaltung | MICCAI 2014 Workshop on Deep Brain Stimulation Methodological Challenges - Boston, USA / Vereinigte Staaten Dauer: 14.09.2014 → 18.09.2014 http://miccai2014.org/workshop_program.html |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | MICCAI 2014 Workshop on Deep Brain Stimulation Methodological Challenges |
---|---|
Land/Gebiet | USA / Vereinigte Staaten |
Ort | Boston |
Zeitraum | 14.09.14 → 18.09.14 |
Internetadresse |