Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver

Carolin Czauderna, Mayrel Palestino-Dominguez, Darko Castven, Diana Becker, Luis Zanon-Rodriguez, Jovana Hajduk, Friederike L. Mahn, Monika Herr, Dennis Strand, Susanne Strand, Stefanie Heilmann-Heimbach, Luis E. Gomez-Quiroz, Marcus A. Wörns, Peter R. Galle, Jens U. Marquardt*

*Korrespondierende/r Autor/-in für diese Arbeit
5 Zitate (Scopus)

Abstract

Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepa-toma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0–1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases.

OriginalspracheEnglisch
Aufsatznummere0209067
ZeitschriftPLoS ONE
Jahrgang13
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 12.2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren