Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm

Tanya Braun, Ralf Möller

Abstract

Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries as well as first-order knowledge compilation (FOKC) based on weighted model counting. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model and LVE as a subroutine in its computations. For certain inputs, the implementation of LVE and, as a result, LJT ground parts of a model where FOKC runs without groundings. The purpose of this paper is to prepare LJT as a backbone for lifted query answering and to use any exact inference algorithm as subroutine. Fusing LJT and FOKC, by setting FOKC as a subroutine, allows us to compute answers faster than FOKC alone and LJT with LVE for certain inputs.
OriginalspracheEnglisch
TitelKI 2018: Advances in Artificial Intelligence
Redakteure/-innenFrank Trollmann, Anni-Yasmin Turhan
Seitenumfang14
Band11117
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum30.08.2018
Seiten24-37
ISBN (Print)978-3-030-00110-0
ISBN (elektronisch)978-3-030-00111-7
DOIs
PublikationsstatusVeröffentlicht - 30.08.2018
Veranstaltung41st German Conference on Artificial Intelligence
- Berlin, Deutschland
Dauer: 24.09.201828.09.2018
Konferenznummer: 218679

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

DFG-Fachsystematik

  • 4.43-01 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren