Abstract
Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries as well as first-order knowledge compilation (FOKC) based on weighted model counting. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model and LVE as a subroutine in its computations. For certain inputs, the implementation of LVE and, as a result, LJT ground parts of a model where FOKC runs without groundings. The purpose of this paper is to prepare LJT as a backbone for lifted query answering and to use any exact inference algorithm as subroutine. Fusing LJT and FOKC, by setting FOKC as a subroutine, allows us to compute answers faster than FOKC alone and LJT with LVE for certain inputs.
Originalsprache | Englisch |
---|---|
Titel | KI 2018: Advances in Artificial Intelligence |
Redakteure/-innen | Frank Trollmann, Anni-Yasmin Turhan |
Seitenumfang | 14 |
Band | 11117 |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer International Publishing |
Erscheinungsdatum | 30.08.2018 |
Seiten | 24-37 |
ISBN (Print) | 978-3-030-00110-0 |
ISBN (elektronisch) | 978-3-030-00111-7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 30.08.2018 |
Veranstaltung | 41st German Conference on Artificial Intelligence - Berlin, Deutschland Dauer: 24.09.2018 → 28.09.2018 Konferenznummer: 218679 |
Strategische Forschungsbereiche und Zentren
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
- Querschnittsbereich: Intelligente Systeme
DFG-Fachsystematik
- 4.43-01 Theoretische Informatik