Foveated Manifold Sensing for object recognition

Abstract

We present a novel method, Foveated Manifold Sensing, for the adaptive and efficient sensing of the visual world. The method is based on algorithms that learn manifolds of increasing but low dimensionality for representative data. As opposed to Manifold Sensing, the new foveated version senses only the most salient areas of a scene. This leads to an efficient sensing strategy that requires only a small number of sensing actions. The method is adaptive because during the sensing process, every new sensing action depends on the previously acquired sensing values. Finally, we propose a hybrid sensing scheme that starts with Manifold Sensing and proceeds with Foveated Manifold Sensing. This sensing scheme needs even less sensing actions for the considered recognition tasks. We apply the proposed algorithms to object recognition on the UMIST and ALOI datasets. We show that, for both databases, we reach a 100% recognition rate with only 10 sensing values.


OriginalspracheEnglisch
Titel2015 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)
Seitenumfang5
Band10617
Herausgeber (Verlag)IEEE
Erscheinungsdatum10.08.2015
Seiten196-200
ISBN (elektronisch)978-1-4799-8505-0
DOIs
PublikationsstatusVeröffentlicht - 10.08.2015
VeranstaltungIEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) 2015 - Constanta, Romania, Constanta, Rumänien
Dauer: 18.05.201521.05.2015
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7171192

Fingerprint

Untersuchen Sie die Forschungsthemen von „Foveated Manifold Sensing for object recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren