Formal verification of neural networks?

Martin Leucker*

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Machine learning is a popular tool for building state of the art software systems. It is more and more used also in safety critical areas. This demands for verification techniques ensuring the safety and security of machine learning based solutions. However, we argue that the popularity of machine learning comes from the fact that no formal specification exists which renders traditional verification inappropriate. Instead, validation is typically demanded, but formalization of so far informal requirements is necessary to give formal evidence that the right system is build. Moreover, we present a recent technique that allows to check certain properties for an underlying recurrent neural network and which may be uses as a tool to identify whether the system learned is right.

OriginalspracheEnglisch
TitelSBMF 2020: Formal Methods: Foundations and Applications
Redakteure/-innenGustavo Carvalho, Volker Stolz
Seitenumfang5
Band12475 LNCS
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum19.11.2020
Seiten3-7
ISBN (Print)978-3-030-63881-8
ISBN (elektronisch)978-3-030-63882-5
DOIs
PublikationsstatusVeröffentlicht - 19.11.2020
Veranstaltung23rd Brazilian Symposium on Formal Methods - Ouro Preto, Brasilien
Dauer: 25.11.202027.11.2020
Konferenznummer: 252049

Fingerprint

Untersuchen Sie die Forschungsthemen von „Formal verification of neural networks?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren