Finding minimal d-separators in linear time and applications

Abstract

The study of graphical causal models is fundamentally the study of separations and conditional independences. We provide linear-time algorithms for two graphical primitives: to test, if a given set is a minimal d-separator, and to find a minimal d-separator in directed acyclic graphs (DAGs), completed partially directed acyclic graphs (CPDAGs) and restricted chain graphs (RCGs) as well as minimal m-separators in ancestral graphs (AGs). These algorithms improve the runtime of the best previously known algorithms for minimal separators that are based on moralization and thus require quadratic time to construct and handle the moral graph. (Minimal) separating sets have important applications like finding (minimal) covariate adjustment sets or conditional instrumental variables.

OriginalspracheEnglisch
Seiten637-647
Seitenumfang11
PublikationsstatusVeröffentlicht - 2019
Veranstaltung35th Conference on Uncertainty in Artificial Intelligence - Tel Aviv, Israel
Dauer: 22.07.201925.07.2019
Konferenznummer: 151391

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress35th Conference on Uncertainty in Artificial Intelligence
KurztitelUAI 2019
Land/GebietIsrael
OrtTel Aviv
Zeitraum22.07.1925.07.19

DFG-Fachsystematik

  • 409-01 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Finding minimal d-separators in linear time and applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren