Find Rooms for Improvement: Towards Semi-automatic Labeling of Occupancy Grid Maps

Sven Hellbach, Marian Himstedt, Frank Bahrmann, Martin Riedel, Thomas Villmann, Hans-Joachim Böhme

Abstract

Semi-automatic semantic labeling of occupancy grid maps has numerous applications for assistance robotic. This paper proposes an approach based on non-negative matrix factorization (NMF) to extract environment specific features from a given occupancy grid map. NMF also computes a description about where on the map these features need to be applied. We use this description after certain pre-processing steps as an input for generalized learning vector quantization (GLVQ) to achieve the classification or labeling of the grid cells. For the supervised training of the GLVQ the assigned label is propagated to all grid cells of a semantic unit using a simple, yet effective segmentation algorithm. Our approach is evaluated on a standard data set from University of Freiburg, showing very promising results.
OriginalspracheEnglisch
TitelNeural Information Processing
Redakteure/-innenChu Kiong Loo, Keem Siah Yap, Kok Wai Wong, Andrew Teoh Beng Jin, Kaizhu Huang
Seitenumfang10
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum01.11.2014
Seiten543-552
ISBN (Print)978-3-319-12642-5
ISBN (elektronisch)978-3-319-12643-2
DOIs
PublikationsstatusVeröffentlicht - 01.11.2014
Extern publiziertJa
Veranstaltung21st International Conference on Neural Information Processing - Kuching, Malaysia
Dauer: 03.11.201406.11.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Find Rooms for Improvement: Towards Semi-automatic Labeling of Occupancy Grid Maps“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren