Feasibility of Colon Cancer Detection in Confocal Laser Microscopy Images Using Convolution Neural Networks

Nils Gessert*, Lukas Wittig, Daniel Drömann, Tobias Keck, Alexander Schlaefer, David B. Ellebrecht

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Histological evaluation of tissue samples is a typical approach to identify colorectal cancer metastases in the peritoneum. For immediate assessment, reliable and real-time in-vivo imaging would be required. For example, intraoperative confocal laser microscopy has been shown to be suitable for distinguishing organs and also malignant and benign tissue. So far, the analysis is done by human experts. We investigate the feasibility of automatic colon cancer classification from confocal laser microscopy images using deep learning models. We overcome very small dataset sizes through transfer learning with state-of-the-art architectures. We achieve an accuracy of 89.1% for cancer detection in the peritoneum which indicates viability as an intraoperative decision support system.

OriginalspracheEnglisch
TitelBildverarbeitung für die Medizin 2019
Redakteure/-innenHeinz Handels, Thomas M. Deserno, Andreas Maier, Klaus Hermann Maier-Hein, Christoph Palm, Thomas Tolxdorff
Seitenumfang6
Herausgeber (Verlag)Springer Vieweg, Wiesbaden
Erscheinungsdatum07.02.2019
Seiten327-332
ISBN (Print)978-3-658-25325-7
ISBN (elektronisch)978-3-658-25326-4
DOIs
PublikationsstatusVeröffentlicht - 07.02.2019
VeranstaltungWorkshop on Bildverarbeitung fur die Medizin 2019 - Lübeck, Deutschland
Dauer: 17.03.201919.03.2019
Konferenznummer: 224899

Fingerprint

Untersuchen Sie die Forschungsthemen von „Feasibility of Colon Cancer Detection in Confocal Laser Microscopy Images Using Convolution Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren