Fast Explicit Diffusion for Registration with Direction-Dependent Regularization

Alexander Schmidt-Richberg, Jan Ehrhardt, René Werner, Heinz Handels, B. M. Dawant (Herausgeber*in), G. E. Christensen, J.M. Fitzpatrick (Herausgeber*in), D. Rueckert


The accurate estimation of respiratory lung motion by non-linear registration is currently an important topic of research and required for many applications in pulmonary image analysis, e.g. for radiotherapy treatment planning.

A special challenge for lung registration is the sliding motion between visceral an parietal pleurae during breathing, which causes discontinuities in the motion field. It has been shown that accounting for this physiological aspect by modeling the sliding motion using a direction-dependent regularization approach can significantly improve registration results. While the potential of such physiology-based regularization methods has been demonstrated in several publications, so far only simple explicit solution schemes were applied due to the computational complexity.

In this paper, a numerical solution of the direction-dependent regularization based on Fast Explicit Diffusion (FED) is presented. The approach is tested for motion estimation on 23 thoracic CT images and a significant improvement over the classic explicit solution is shown.
TitelBiomedical Image Registration
Redakteure/-innenBenoît M. Dawant, Gary E. Christensen, J. Michael Fitzpatrick, Daniel Rueckert
Herausgeber (Verlag)Springer Vieweg, Berlin Heidelberg
ISBN (Print)978-3-642-31339-4
ISBN (elektronisch)978-3-642-31340-0
PublikationsstatusVeröffentlicht - 2012
VeranstaltungBiomedical Image Registration, 5th International Workshop, WBIR 2012
- , USA / Vereinigte Staaten
Dauer: 07.07.201208.07.2012


Untersuchen Sie die Forschungsthemen von „Fast Explicit Diffusion for Registration with Direction-Dependent Regularization“. Zusammen bilden sie einen einzigartigen Fingerprint.