Abstract
Large probabilistic models are often shaped by a pool of known individuals (a universe) and relations between them. Lifted inference algorithms handle sets of known individuals for tractable inference. Universes may not always be known, though, or may only described by assumptions such as “small universes are more likely”. Without a universe, inference is no longer possible for lifted algorithms, losing their advantage of tractable inference. The aim of this paper is to define a semantics for models with unknown universes decoupled from a specific constraint language to enable lifted and thereby, tractable inference.
Originalsprache | Englisch |
---|---|
Titel | AI 2019: AI 2019: Advances in Artificial Intelligence |
Redakteure/-innen | Jixue Liu, James Bailey |
Seitenumfang | 13 |
Band | 11919 LNAI |
Herausgeber (Verlag) | Springer, Cham |
Erscheinungsdatum | 25.11.2019 |
Seiten | 91-103 |
ISBN (Print) | 978-3-030-35287-5 |
ISBN (elektronisch) | 978-3-030-35288-2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 25.11.2019 |
Veranstaltung | 32nd Australasian Joint Conference on Artificial Intelligence - Adelaide, Australien Dauer: 02.12.2019 → 05.12.2019 Konferenznummer: 234489 |
Strategische Forschungsbereiche und Zentren
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
- Querschnittsbereich: Intelligente Systeme