Exploiting Innocuousness in Bayesian Networks

Alexander Motzek, Ralf Möller

Abstract

Boolean combination functions in Bayesian networks, such as noisy-or, are often credited a property stating that inactive dependences (e.g., observed to false) do not ``cause any harm'' and an arc becomes vacuous and could have been left out. However, in classic Bayesian networks we are not able to express this property in local CPDs. By using novel ADBNs, we formalize the innocuousness property in CPDs and extend previous work on context-specific independencies. With an explicit representation of innocuousness in local CPDs, we provide a higher causal accuracy for CPD specifications and open new ways for more efficient and less-restricted reasoning in (A)DBNs.
OriginalspracheEnglisch
TitelAI 2015: Advances in Artificial Intelligence
Redakteure/-innenBernhard Pfahringer, Jochen Renz
Seitenumfang13
Band9457
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum2015
Seiten411-423
ISBN (Print)978-3-319-26349-6
ISBN (elektronisch)978-3-319-26350-2
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung28th Australasian Joint Conference on Artificial Intelligence - Canberra, Australien
Dauer: 30.11.201504.12.2015
Konferenznummer: 157849

DFG-Fachsystematik

  • 409-01 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploiting Innocuousness in Bayesian Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren