Evaluation of the quality of electrocardiograms, seismocardiograms and gyrocardiograms based on characteristics derived from symmetric projection attractor reconstruction

Szymon Sieciński*, Laura Pauline Scherf, Marcin Grzegorzek

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

This study presents the evaluation of cardiovascular signals (electrocardiograms, seismocardiograms, and gyrocardiograms) based on features derived from symmetric projection attractor reconstruction (SPAR). We assessed five classifiers: random forests, bagged trees, gradient boosting, multilayer perceptron, and support vector machine. The highest accuracy was achieved for bagged trees in ECG signals (0.6667) and the lowest overall accuracy for the multilayer perceptron in SCG signals (0.3333). The results showed that five classifiers fed features derived from SPAR can be used to assess the quality of cardiovascular signals.
OriginalspracheEnglisch
Seiten161-162
Seitenumfang2
DOIs
PublikationsstatusVeröffentlicht - 29.01.2024
Veranstaltung2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology - Hilton Malta, St. Julian's, Malta
Dauer: 07.12.202309.12.2023
https://datascience.embs.org/2023

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology
Land/GebietMalta
OrtSt. Julian's
Zeitraum07.12.2309.12.23
Internetadresse

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

DFG-Fachsystematik

  • 2.22-32 Medizinische Physik, Biomedizinische Technik
  • 2.22-07 Medizininformatik und medizinische Bioinformatik
  • 2.22-12 Kardiologie, Angiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation of the quality of electrocardiograms, seismocardiograms and gyrocardiograms based on characteristics derived from symmetric projection attractor reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren