Abstract
This study presents the evaluation of cardiovascular signals (electrocardiograms, seismocardiograms, and gyrocardiograms) based on features derived from symmetric projection attractor reconstruction (SPAR). We assessed five classifiers: random forests, bagged trees, gradient boosting, multilayer perceptron, and support vector machine. The highest accuracy was achieved for bagged trees in ECG signals (0.6667) and the lowest overall accuracy for the multilayer perceptron in SCG signals (0.3333). The results showed that five classifiers fed features derived from SPAR can be used to assess the quality of cardiovascular signals.
Originalsprache | Englisch |
---|---|
Seiten | 161-162 |
Seitenumfang | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 29.01.2024 |
Veranstaltung | 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology - Hilton Malta, St. Julian's, Malta Dauer: 07.12.2023 → 09.12.2023 https://datascience.embs.org/2023 |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology |
---|---|
Land/Gebiet | Malta |
Ort | St. Julian's |
Zeitraum | 07.12.23 → 09.12.23 |
Internetadresse |
Strategische Forschungsbereiche und Zentren
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
DFG-Fachsystematik
- 2.22-32 Medizinische Physik, Biomedizinische Technik
- 2.22-07 Medizininformatik und medizinische Bioinformatik
- 2.22-12 Kardiologie, Angiologie