Evaluation approaches of personal knowledge graphs

Hanieh Khorashadizadeh*, Frederic Ieng, Morteza Ezzabady, Soror Sahri, Sven Groppe, Farah Benamara

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Knowledge graphs (KGs) provide structured data for users' applications such as recommendation systems, personal assistants, and question-answering systems. The quality of the underlying applications relies deeply on the quality of the knowledge graph. However, KGs inevitably have inconsistencies, such as duplicates, wrong assertions, and missing values. The presence of such issues may compromise the outcome of business intelligence applications. Hence, it is crucial and necessary to explore efficient and effective methods for tackling the evaluation of KGs. These techniques get much tougher when the KG deals with personal data, which is referred to as Personal Knowledge Graph (PKG). This chapter covers PKG's creation, population, and more importantly their evaluation from a data quality perspective.

OriginalspracheEnglisch
TitelPersonal Knowledge Graphs (PKGs) : Methodology, tools and applications
Seitenumfang17
Herausgeber (Verlag)Institution of Engineering and Technology
Erscheinungsdatum01.01.2023
Seiten277-293
ISBN (Print)9781839537011
ISBN (elektronisch)9781839537028
PublikationsstatusVeröffentlicht - 01.01.2023

Strategische Forschungsbereiche und Zentren

  • Querschnittsbereich: Intelligente Systeme
  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation approaches of personal knowledge graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren