Efficient SVR model update approaches for respiratory motion prediction

Robert Dürichen, Tobias Wissel, Achim Schweikard

Abstract

In order to successfully ablate moving tumours in robotic radiosurgery, respiratory motion prediction is needed to compensate time delays. In this context, recent studies revealed a high potential of support vector regression (SVR). However, high computational cost is one major drawback, particularly caused by batch mode training. We evaluate two approaches to reduce the update rate as well as computation time, while keeping a low prediction error. The update rules are either based on information about the respiratory phase or based on the current prediction error. An evaluation on patient data sets revealed that the second approach on average decreases computation time by 88.53% compared to a batch mode implementation. The prediction error increased by 0.3 hence indicating enhanced efficiency.
OriginalspracheEnglisch
Seitenumfang4
PublikationsstatusVeröffentlicht - 01.11.2012
Veranstaltung11. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirugie (CURAC) - Düsseldorf, Deutschland
Dauer: 15.11.201216.11.2012

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress11. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirugie (CURAC)
Land/GebietDeutschland
OrtDüsseldorf
Zeitraum15.11.1216.11.12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient SVR model update approaches for respiratory motion prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren