Efficient estimation of tissue thicknesses using sparse approximation for Gaussian processes

Tobias Wissel, Patrick Stüber, Benjamin Wagner, Achim Schweikard, Floris Ernst

Abstract

Highly accurate localization of the human skull is vital in cranial radiotherapy. Marker-less optical head tracking provides a fast and accurate way to monitor this motion. Recent research has given evidence that marker-less tracking of the forehead benefits from tissue thickness information in addition to the 3D surface geometry. Using Gaussian Processes (GPs) tissue thickness is determined from optical backscatter of a sweeping laser. However, the computational complexity of the GPs scales cubically with the number of training samples. A full head scan contains 1024 points, whereas scans from several perspectives may be required for a comprehensive model for each subject. In five subjects, we thus evaluate sparse approximation methods to reduce the computational effort. We found a better - computation time versus root mean square error (RMSE) - tradeoff for a simple subset of data (SoD) technique. The increase of RMSE when dropping data was not found steep enough to justify the computational overhead of a better approximation by inducing point methods (namely FITC). Promising results were, however, obtained when clustering the training data before selecting the subset.
OriginalspracheEnglisch
Titel2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Seitenumfang4
BandVolume 2015-November
Herausgeber (Verlag)IEEE
Erscheinungsdatum04.11.2015
Seiten7015-7018
Aufsatznummer7320007
ISBN (Print)978-142449271-8
DOIs
PublikationsstatusVeröffentlicht - 04.11.2015
Veranstaltung37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015)
- MiCo - Milan Conference Center, Milan, Italien
Dauer: 25.08.201529.08.2015
https://embc.embs.org/2015/

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient estimation of tissue thicknesses using sparse approximation for Gaussian processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren