Dimensionality Reduction of Medical Image Descriptors for Multimodal Image Registration

Abstract


Defining similarity forms a challenging and relevant research topic in multimodal image registration. The frequently used mutual information disregards contextual information, which is shared across modalities. A recent popular approach, called modality independent neigh-bourhood descriptor, is based on local self-similarities of image patches and is therefore able to capture spatial information. This image descriptor generates vectorial representations, i.e. it is multidimensional, which results in a disadvantage in terms of computation time. In this work, we present a problem-adapted solution for dimensionality reduction, by using principal component analysis and Horn’s parallel analysis. Furthermore, the influence of dimensionality reduction in global rigid image registration is investigated. It is shown that the registration results obtained from the reduced descriptor have the same high quality in comparison to those found for the original descriptor.
OriginalspracheEnglisch
TitelStudent Conference Medical Engineering Science 2015
Redakteure/-innenBuzug, Thorsten
Seitenumfang5
ErscheinungsortLübeck
Herausgeber (Verlag)Infinite Science Publishing
Erscheinungsdatum01.07.2015
Seiten201 - 205
ISBN (Print)978-3-945954-00-3
DOIs
PublikationsstatusVeröffentlicht - 01.07.2015
VeranstaltungStudent Conference 2015, Medical Engineering Science
- Lübeck, Deutschland
Dauer: 11.03.201513.03.2015
http://www.bio-med-tec.de/studierendentagung/previous-conferences/studierendentagung-2015.html

Fingerprint

Untersuchen Sie die Forschungsthemen von „Dimensionality Reduction of Medical Image Descriptors for Multimodal Image Registration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren