Abstract
Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.
Originalsprache | Englisch |
---|---|
Titel | 12th International Conference on Image Analysis and Processing, 2003.Proceedings. |
Seitenumfang | 6 |
Herausgeber (Verlag) | IEEE |
Erscheinungsdatum | 01.12.2003 |
Seiten | 430-435 |
Aufsatznummer | 1234088 |
ISBN (Print) | 0-7695-1948-2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.12.2003 |
Veranstaltung | 12th International Conference on Image Analysis and Processing - Mantova, Italien Dauer: 17.09.2003 → 19.09.2003 Konferenznummer: 101350 |