Detection and recognition of moving objects using statistical motion detection and Fourier descriptors

Daniel Toth, Til Aach

Abstract

Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.

OriginalspracheEnglisch
Titel 12th International Conference on Image Analysis and Processing, 2003.Proceedings.
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.12.2003
Seiten430-435
Aufsatznummer1234088
ISBN (Print)0-7695-1948-2
DOIs
PublikationsstatusVeröffentlicht - 01.12.2003
Veranstaltung12th International Conference on Image Analysis and Processing
- Mantova, Italien
Dauer: 17.09.200319.09.2003
Konferenznummer: 101350

Fingerprint

Untersuchen Sie die Forschungsthemen von „Detection and recognition of moving objects using statistical motion detection and Fourier descriptors“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren