Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot

Harsh Yadav, Honghu Xue, Yan Rudall, Mohamed Bakr, Benedikt Hein, Elmar Rueckert, Ngoc Thinh Nguyen*

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

This paper presents a study on the mapless navigation of autonomous mobile robot using Deep Reinforcement Learning in an intralogistics setting. The task is to make an autonomous mobile robot learn to navigate to a goal without prior knowledge of the environment. In this paper, a controller using the Soft Actor-Critic algorithm is designed, trained, and applied for navigating the robot equipped with 360° LiDAR and front camera sensors. The controller is successfully validated in an almost fully observable environment under extensive simulations. Furthermore, we investigate the performance of the proposed controller in a partially observable environment and possible limitations. We use a 3D Temporal Convolution Network for processing the time series image data from visual observations. Besides Partial Observability, we also address the problem of sparse positive rewards in training the Deep Reinforcement Learning algorithm with a combined approach of Automatic Curriculum Learning and Dual Prioritized Experience Replay.

OriginalspracheEnglisch
Titel2023 27th International Conference on System Theory, Control and Computing (ICSTCC)
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum2023
Seiten283-288
ISBN (Print)979-8-3503-3799-0
ISBN (elektronisch)979-8-3503-3798-3
DOIs
PublikationsstatusVeröffentlicht - 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren