Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies

Julia Andresen, Timo Kepp, Jan Ehrhardt, Claus von der Burchard, Johann Roider, Heinz Handels

Abstract

The registration of medical images often suffers from missing correspondences due to inter-patient variations, pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valuable information. Detecting non-corresponding regions simultaneously with the registration process helps generating better deformations and has been investigated thoroughly with classical iterative frameworks but rarely with deep learning-based methods.
OriginalspracheEnglisch
Aufsatznummer4
ZeitschriftInternational Journal of Computer Assisted Radiology and Surgery
Jahrgang17
Ausgabenummer4
Seiten (von - bis)699-710
Seitenumfang12
ISSN1861-6429
DOIs
PublikationsstatusVeröffentlicht - 04.2022

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren