Abstract
The use of contrast agents in CT angiography examinations holds a potential health risk for the patient. Despite this, often unintentionally an excessive contrast agent dose is administered. Our goal is to provide a support system for the medical practitioner that advises to adjust an individually adapted dose. We propose a comparison between different means of feature encoding techniques to gain a higher accuracy when recommending the dose adjustment. We apply advanced deep learning approaches and standard methods like principle component analysis to encode high dimensional parameter vectors in a low dimensional feature space. Our experiments showed that features encoded by a regression neural network provided the best results. Especially with a focus on the 90% precision for the “excessive dose” class meaning that if our system classified a case as “excessive dose” the ground truth is most likely accordingly. With that in mind a recommendation for a lower dose could be administered without the risk of insufficient contrast and therefore a repetition of the CT angiography examination. In conclusion we showed that Deep-Learning-based feature encoding on clinical parameters is advantageous for our aim to prevent excessive contrast agent doses.
Originalsprache | Deutsch |
---|---|
Titel | Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST |
Seitenumfang | 8 |
Herausgeber (Verlag) | Springer Science and Business Media Deutschland GmbH |
Erscheinungsdatum | 2021 |
Seiten | 315-322 |
ISBN (Print) | 9783030705688 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2021 |
Strategische Forschungsbereiche und Zentren
- Forschungsschwerpunkt: Biomedizintechnik
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
DFG-Fachsystematik
- 2.22-30 Radiologie
- 2.22-07 Medizininformatik und medizinische Bioinformatik
- 2.22-32 Medizinische Physik, Biomedizinische Technik
- 4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing