Deep Groupwise Registration of MRI Using Deforming Autoencoders

Hanna Siebert*, Mattias P. Heinrich

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Groupwise image registration and the estimation of anatomical shape variation play an important role for dealing with the analysis of large medical image datasets. In this work we adapt the concept of deforming autoencoders that decouples shape and appearance in an unsupervised learning setting, following a deformable template paradigm, and apply its capability for groupwise image alignment. We implement and evaluate this model for the application on medical image data and show its suitability for this domain by training it on middle slice MRI brain scans. Anatomical shape and appearance variation can be modeled by means of splitting a low-dimensional latent code into two parts that serve as inputs for separate appearance and shape decoder networks. We demonstrate the potential of deforming autoencoders to learn meaningful appearance and deformation representations of medical image data.

OriginalspracheEnglisch
TitelBildverarbeitung für die Medizin 2020
Redakteure/-innenThomas Tolxdorff, Thomas M. Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein, Christoph Palm
Seitenumfang6
Herausgeber (Verlag)Springer Vieweg, Wiesbaden
Erscheinungsdatum12.02.2020
Seiten236-241
ISBN (Print)978-3-658-29266-9
ISBN (elektronisch)978-3-658-29267-6
DOIs
PublikationsstatusVeröffentlicht - 12.02.2020
VeranstaltungBildverarbeitung für die Medizin 2020 - International workshop on Algorithmen - Systeme - Anwendungen
- Berlin, Deutschland
Dauer: 15.03.202017.03.2020
Konferenznummer: 237969

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Groupwise Registration of MRI Using Deforming Autoencoders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren