TY - JOUR
T1 - Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma – analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM
AU - Placke, Jan Malte
AU - Kimmig, Mona
AU - Griewank, Klaus
AU - Herbst, Rudolf
AU - Terheyden, Patrick
AU - Utikal, Jochen
AU - Pföhler, Claudia
AU - Ulrich, Jens
AU - Kreuter, Alexander
AU - Mohr, Peter
AU - Gutzmer, Ralf
AU - Meier, Friedegund
AU - Dippel, Edgar
AU - Welzel, Julia
AU - Engel, Daniel Robert
AU - Kreft, Sophia
AU - Sucker, Antje
AU - Lodde, Georg
AU - Krefting, Frederik
AU - Stoffels, Ingo
AU - Klode, Joachim
AU - Roesch, Alexander
AU - Zimmer, Lisa
AU - Livingstone, Elisabeth
AU - Hadaschik, Eva
AU - Becker, Jürgen C.
AU - Weichenthal, Michael
AU - Tasdogan, Alpaslan
AU - Schadendorf, Dirk
AU - Ugurel, Selma
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/10
Y1 - 2023/10
N2 - Background: PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. Methods: Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28–8; cutoff ≥5%) and stratified by tissue type. Findings: Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138–0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311–1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310–0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307–0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467–1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305–0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555–1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698–1.681; P = 0.72). Interpretation: For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. Funding: Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).
AB - Background: PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. Methods: Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28–8; cutoff ≥5%) and stratified by tissue type. Findings: Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138–0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311–1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310–0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307–0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467–1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305–0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555–1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698–1.681; P = 0.72). Interpretation: For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. Funding: Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).
UR - http://www.scopus.com/inward/record.url?scp=85169571541&partnerID=8YFLogxK
U2 - 10.1016/j.ebiom.2023.104774
DO - 10.1016/j.ebiom.2023.104774
M3 - Journal articles
C2 - 37660535
AN - SCOPUS:85169571541
SN - 2352-3964
VL - 96
JO - EBioMedicine
JF - EBioMedicine
M1 - 104774
ER -