Convolutive blind source separation based on disjointness maximization of subband signals

Tiemin Mei*, Alfred Mertins

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

The concept of disjoint component analysis (DCA) is based on the fact that different speech or audio signals are typically more disjoint than mixtures of them. This letter studies the problem of blind separation of convolutive mixtures through the subband-wise maximization of the disjointness of time-frequency representations of the signals. In our approach, we first define a frequency-dependent measure representing the closeness to disjointness of a group of subband signals. Then, this frequency-dependent measure is integrated to form an objective function that only depends on the time-domain parameters of the separation system. Lastly, an efficient natural-gradient-based learning rule is developed for the update of the separation-system coefficients.

OriginalspracheEnglisch
ZeitschriftIEEE Signal Processing Letters
Jahrgang15
Seiten (von - bis)725-728
Seitenumfang4
ISSN1070-9908
DOIs
PublikationsstatusVeröffentlicht - 01.12.2008

Fingerprint

Untersuchen Sie die Forschungsthemen von „Convolutive blind source separation based on disjointness maximization of subband signals“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren