Continuous weak approximation for stochastic differential equations

Kristian Debrabant, Andreas Rößler*

*Korrespondierende/r Autor/-in für diese Arbeit
7 Zitate (Scopus)

Abstract

A convergence theorem for the continuous weak approximation of the solution of stochastic differential equations (SDEs) by general one-step methods is proved, which is an extension of a theorem due to Milstein. As an application, uniform second order conditions for a class of continuous stochastic Runge-Kutta methods containing the continuous extension of the second order stochastic Runge-Kutta scheme due to Platen are derived. Further, some coefficients for optimal continuous schemes applicable to Itô SDEs with respect to a multi-dimensional Wiener process are presented.

OriginalspracheEnglisch
ZeitschriftJournal of Computational and Applied Mathematics
Jahrgang214
Ausgabenummer1
Seiten (von - bis)259-273
Seitenumfang15
ISSN0377-0427
DOIs
PublikationsstatusVeröffentlicht - 15.04.2008

Fingerprint

Untersuchen Sie die Forschungsthemen von „Continuous weak approximation for stochastic differential equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren