Projekte pro Jahr
Abstract
This work presents a feature-extraction method that is based on the theory of invariant integration. The invariant-integration features are derived from an extended time period, and their computation has a very low complexity. Recognition experiments show a superior performance of the presented feature type compared to cepstral coefficients using a mel filterbank (MFCCs) or a gammatone filterbank (GTCCs) in matching as well as in mismatching training-testing conditions. Even without any speaker adaptation, the presented features yield accuracies that are larger than for MFCCs combined with vocal tract length normalization (VTLN) in matching training-test conditions. Also, it is shown that the invariant-integration features (IIFs) can be successfully combined with additional speaker-adaptation methods to further increase the accuracy. In addition to standard MFCCs also contextual MFCCs are introduced. Their performance lies between the one of MFCCs and IIFs.
Originalsprache | Englisch |
---|---|
Zeitschrift | Speech Communication |
Jahrgang | 53 |
Ausgabenummer | 6 |
Seiten (von - bis) | 830-841 |
Seitenumfang | 12 |
ISSN | 0167-6393 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.07.2011 |
Fingerprint
Untersuchen Sie die Forschungsthemen von „Contextual invariant-integration features for improved speaker-independent speech recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
Invariante Merkmale für die automatische Spracherkennung
Mertins, A. (Projektleiter*in (PI))
01.01.07 → 31.12.11
Projekt: DFG-Projekte › DFG Einzelförderungen