Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations

Dierck Hillmann*, Clara Pfäffle, Hendrik Spahr, Sazan Burhan, Lisa Kutzner, Felix Hilge, Gereon Hüttmann

*Korrespondierende/r Autor/-in für diese Arbeit
2 Zitate (Scopus)

Abstract

Computational adaptive optics (CAO) is emerging as a viable alternative to hardware-based adaptive optics—in particular when applied to optical coherence tomography of the retina. For this technique, algorithms are required that detect wavefront errors precisely and quickly. Here we propose an extension of the frequently used subaperture image correlation. By applying this algorithm iteratively and, more importantly, comparing each subaperture not to the central subaperture but to several randomly selected apertures, we improved aberration correction. Since these modifications only slightly increase the run time of the correction, we believe this method can become the algorithm of choice for many CAO applications.

OriginalspracheEnglisch
ZeitschriftOptics Letters
Jahrgang44
Ausgabenummer15
Seiten (von - bis)3905-3908
Seitenumfang4
ISSN0146-9592
DOIs
PublikationsstatusVeröffentlicht - 01.08.2019

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren