Comparing deep learning strategies and attention mechanisms of discrete registration for multimodal image-guided interventions

In Young Ha*, Mattias P. Heinrich

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

In medical imaging, deep learning has been applied to segmentation and classification tasks successfully, whereas its use for image registration tasks is still limited. The use of discrete registration can alleviate the problems limiting the use of CNN based registration for large displacements by helping to capture more complex deformations. We evaluate different building blocks of learning based discrete registration for the CuRIOUS multimodal image registration challenge. We also propose a new attention module, which estimates information contents of a grid point, compare different loss functions and evaluate the influence of self-supervised pre-training of feature extraction step.

OriginalspracheEnglisch
TitelLABELS 2019, HAL-MICCAI 2019, CuRIOUS 2019: Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention
Redakteure/-innenLuping Zhou, Nicholas Heller, Yiyu Shi, Yiming Xiao, Raphael Sznitman, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, X. Sharon Hu, Danny Chen, Matthieu Chabanas, Hassan Rivaz, Ingerid Reinertsen
Seitenumfang7
Band11851 LNCS
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum24.10.2019
Seiten145-151
ISBN (Print)978-3-030-33641-7
ISBN (elektronisch)978-3-030-33642-4
DOIs
PublikationsstatusVeröffentlicht - 24.10.2019
Veranstaltung22nd International Conference on Medical Image Computing and Computer-Assisted Intervention - Shenzhen, China
Dauer: 13.10.201917.10.2019
Konferenznummer: 232939

Fingerprint

Untersuchen Sie die Forschungsthemen von „Comparing deep learning strategies and attention mechanisms of discrete registration for multimodal image-guided interventions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren