COAL: A generic modelling and prototyping framework for convex optimization problems of variational image analysis

Dirk Breitenreicher*, Jan Lellmann, Christoph Schnörr

*Korrespondierende/r Autor/-in für diese Arbeit
1 Zitat (Scopus)

Abstract

We present the Convex Optimization Algorithms Library (COAL), a flexible C++framework for modelling and solving convex optimization problems in connection with variational problems of image analysis. COAL connects solver implementations with specific models via an extensible set of properties, without enforcing a specific standard form. This allows to exploit the problem structure and to handle large-scale problems while supporting rapid prototyping and modifications of the model. Based on predefined building blocks, a broad range of functionals encountered in image analysis can be implemented and be reliably optimized using state-of-the-art algorithms, without the need to know algorithmic details. We demonstrate the use of COAL on four representative variational problems of image analysis.

OriginalspracheEnglisch
ZeitschriftOptimization Methods and Software
Jahrgang28
Ausgabenummer5
Seiten (von - bis)1081-1094
Seitenumfang14
ISSN1055-6788
DOIs
PublikationsstatusVeröffentlicht - 01.10.2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „COAL: A generic modelling and prototyping framework for convex optimization problems of variational image analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren