Classification of Roads and Types of Public Roads Using EOG Smart Glasses and an Algorithm Based on Machine Learning While Driving a Car

Rafał Doniec, Natalia Piaseczna*, Frédéric Li, Konrad Duraj, Hawzhin Hozhabr Pour, Marcin Grzegorzek, Katarzyna Mocny-Pachońska, Ewaryst Tkacz

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Driving a car is an activity that became necessary for exploration, even when living in the present world. Research exploring the topic of safety on the roads has therefore become increasingly relevant. In this paper, we propose a recognition algorithm based on physiological signals acquired from JINS MEME ES_R smart glasses (electrooculography, acceleration and angular velocity) to classify four commonly encountered road types: city road, highway, housing estate and undeveloped area. Data from 30 drivers were acquired in real driving conditions. Hand-crafted statistical features were extracted from the physiological signals to train and evaluate a random forest classifier. We achieved an overall accuracy, precision, recall and F1 score of 87.64%, 86.30%, 88.12% and 87.08% on the test dataset, respectively.

OriginalspracheEnglisch
Aufsatznummer2960
ZeitschriftElectronics (Switzerland)
Jahrgang11
Ausgabenummer18
DOIs
PublikationsstatusVeröffentlicht - 09.2022

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

DFG-Fachsystematik

  • 4.41-04 Verkehrs- und Transportsysteme, Intelligenter und automatisierter Verkehr

Fingerprint

Untersuchen Sie die Forschungsthemen von „Classification of Roads and Types of Public Roads Using EOG Smart Glasses and an Algorithm Based on Machine Learning While Driving a Car“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren