Chebyshev polynomials are not always optimal

Bernd Fischer*, Roland Freund

*Korrespondierende/r Autor/-in für diese Arbeit
18 Zitate (Scopus)

Abstract

We are concerned with the problem of finding the polynomial with minimal uniform norm on E among all polynomials of degree at most n and normalized to be 1 at c. Here, E is a given ellipse with both foci on the real axis and c is a given real point not contained in E. Problems of this type arise in certain iterative matrix computations, and, in this context, it is generally believed and widely referenced that suitably normalized Chebyshev polynomials are optimal for such constrained approximation problems. In this work, we show that this is not true in general. Moreover, we derive sufficient conditions which guarantee that Chebyshev polynomials are optimal. Also, some numerical examples are presented.

OriginalspracheEnglisch
ZeitschriftJournal of Approximation Theory
Jahrgang65
Ausgabenummer3
Seiten (von - bis)261-272
Seitenumfang12
ISSN0021-9045
DOIs
PublikationsstatusVeröffentlicht - 01.01.1991

Fingerprint

Untersuchen Sie die Forschungsthemen von „Chebyshev polynomials are not always optimal“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren