Cardiovascular Disease Preliminary Diagnosis Application Using SQL Queries: Filling Diagnostic Gaps in Resource-Constrained Environments

Rafał Doniec*, Eva Odima Berepiki, Natalia Piaseczna, Szymon Sieciński*, Artur Piet, Muhammad Tausif Irshad, Ewaryst J. Tkacz, Marcin Grzegorzek, Wojciech M. Glinkowski

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Cardiovascular diseases (CVDs) are chronic diseases associated with a high risk of mortality and morbidity. Early detection of CVD is crucial to initiating timely interventions, such as appropriate counseling and medication, which can effectively manage the condition and improve patient outcomes. This study introduces an innovative ontology-based model for the diagnosis of CVD, aimed at improving decision support systems in healthcare. We developed a database model inspired by ontology principles, tailored for the efficient processing and analysis of CVD-related data. Our model’s effectiveness is demonstrated through its integration into a web application, showcasing significant improvements in diagnostic accuracy and utility in resource-limited settings. Our findings indicate a promising direction for the application of artificial intelligence (AI) in early CVD detection and management, offering a scalable solution to healthcare challenges in diverse environments.
OriginalspracheEnglisch
Aufsatznummer1320
ZeitschriftApplied Sciences (Switzerland)
Jahrgang14
Ausgabenummer3
Seiten (von - bis)1320
ISSN2076-3417
DOIs
PublikationsstatusVeröffentlicht - 05.02.2024

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Zentren: Universitäres Herzzentrum Lübeck (UHZL)

DFG-Fachsystematik

  • 2.22-07 Medizininformatik und medizinische Bioinformatik
  • 2.22-12 Kardiologie, Angiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cardiovascular Disease Preliminary Diagnosis Application Using SQL Queries: Filling Diagnostic Gaps in Resource-Constrained Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren