Brain tumor classification in MRI image using convolutional neural network

Hassan Ali Khan, Wu Jue*, Muhammad Mushtaq, Muhammad Mushtaq

*Korrespondierende/r Autor/-in für diese Arbeit
2 Zitate (Scopus)

Abstract

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Recent progress in the field of deep learning has helped the health industry in Medical Imaging for Medical Diagnostic of many diseases. For Visual learning and Image Recognition, task CNN is the most prevalent and commonly used machine learning algorithm. Similarly, in our paper, we introduce the convolutional neural network (CNN) approach along with Data Augmentation and Image Processing to categorize brain MRI scan images into cancerous and non-cancerous. Using the transfer learning approach we compared the performance of our scratched CNN model with pretrained VGG-16, ResNet-50, and Inception-v3 models. As the experiment is tested on a very small dataset but the experimental result shows that our model accuracy result is very effective and have very low complexity rate by achieving 100% accuracy, while VGG-16 achieved 96%, ResNet-50 achieved 89% and Inception-V3 achieved 75% accuracy. Our model requires very less computational power and has much better accuracy results as compared to other pre-trained models.

OriginalspracheEnglisch
ZeitschriftMathematical Biosciences and Engineering
Jahrgang17
Ausgabenummer5
Seiten (von - bis)6203-6216
Seitenumfang14
ISSN1547-1063
DOIs
PublikationsstatusVeröffentlicht - 15.09.2020

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

DFG-Fachsystematik

  • 409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Brain tumor classification in MRI image using convolutional neural network“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren