TY - JOUR
T1 - Brain injury after gunshot woundingMorphometric analysis of cell destruction caused by temporary cavitation
AU - Oehmichen, Manfred
AU - Meissner, Christoph
AU - König, Hans Günter
PY - 2000/1/1
Y1 - 2000/1/1
N2 - In addition to the primary destruction of brain tissue readily visible at autopsy (permanent track), gunshot wounding to the brain creates a pulsating temporary cavity due to radial expansion along the bullet's track. To determine the maximum extent of this temporary cavitation in brains of victims of gunshots from weapons with low muzzle velocity, we carried out morphometric studies on 20 cases of death from gunshot wounding to the head from bullets with a muzzle energy <500 J and a survival time of <90 min. The brains were fixed in formalin, examine macroscopically and microscopically, and subjected to morphometric analyses. Surrounding the permanent track, a narrow mantle-like zone of astrocyte destruction was found within an area of hemorrhagic extravasation. Axons near the permanent track had been broken into tiny fragments. The axonal damage lessened with increasing distance from the permanent track, although axons continued to be fragmented and to exhibit varicose changes and clumping until assuming their normal structure beyond 18 mm. Nerve cells were extremely shrunken close to the permanent track but gradually took on their normal shape with increasing distance. We also assessed the loss of glial fibrillary acid protein expression by astrocytes in the white matter, the extent of traumatic bleeding, and damage to axons and neurons as measured radially from the permanent track. Axonal and neuronal damage were found to extend about 18 mm radially from the permanent track, tapering gradually along the track from entry point to exit point. The destruction was probably produced by the temporary cavitation and accords with theoretical considerations and experimental observations.
AB - In addition to the primary destruction of brain tissue readily visible at autopsy (permanent track), gunshot wounding to the brain creates a pulsating temporary cavity due to radial expansion along the bullet's track. To determine the maximum extent of this temporary cavitation in brains of victims of gunshots from weapons with low muzzle velocity, we carried out morphometric studies on 20 cases of death from gunshot wounding to the head from bullets with a muzzle energy <500 J and a survival time of <90 min. The brains were fixed in formalin, examine macroscopically and microscopically, and subjected to morphometric analyses. Surrounding the permanent track, a narrow mantle-like zone of astrocyte destruction was found within an area of hemorrhagic extravasation. Axons near the permanent track had been broken into tiny fragments. The axonal damage lessened with increasing distance from the permanent track, although axons continued to be fragmented and to exhibit varicose changes and clumping until assuming their normal structure beyond 18 mm. Nerve cells were extremely shrunken close to the permanent track but gradually took on their normal shape with increasing distance. We also assessed the loss of glial fibrillary acid protein expression by astrocytes in the white matter, the extent of traumatic bleeding, and damage to axons and neurons as measured radially from the permanent track. Axonal and neuronal damage were found to extend about 18 mm radially from the permanent track, tapering gradually along the track from entry point to exit point. The destruction was probably produced by the temporary cavitation and accords with theoretical considerations and experimental observations.
UR - http://www.scopus.com/inward/record.url?scp=0033995833&partnerID=8YFLogxK
U2 - 10.1089/neu.2000.17.155
DO - 10.1089/neu.2000.17.155
M3 - Journal articles
C2 - 10709873
AN - SCOPUS:0033995833
SN - 0897-7151
VL - 17
SP - 155
EP - 162
JO - Journal of Neurotrauma
JF - Journal of Neurotrauma
IS - 2
ER -