Blind Sparsity Based Motion Estimation and Correction Model for Arbitrary MRI Sampling Trajectories

Abstract

A blind retrospective MRI motion estimation and compensation algorithm is designed for arbitrary sampling trajectories. Using the idea of natural images being sparsely representable, the algorithm is based on motion estimation between a motion corrupted image and it’s sparse representative. Therefore, rigid motion models are designed and used in gradient descent methods for image quality optimization. As the motion estimation and compensation work on arbitrary real valued sampling coordinates, the algorithm is capable for all trajectories. Image reconstruction is performed by computationally efficient gridding. The exact motion estimation results are shown for PROPELLER and radial trajectory simulation.
OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 01.05.2019
VeranstaltungAnnual Meeting of the International Society of Magnetic Resonance in Medicine 2019
- Palais des congrès de Montréal, Montréal, Kanada
Dauer: 11.05.201916.01.2021

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressAnnual Meeting of the International Society of Magnetic Resonance in Medicine 2019
KurztitelISMRM 2019
Land/GebietKanada
OrtMontréal
Zeitraum11.05.1916.01.21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blind Sparsity Based Motion Estimation and Correction Model for Arbitrary MRI Sampling Trajectories“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren