Bayesian Illumination-Invariant Motion Detection

T. Aach, L. Dümbgen, R. Mester, D. Toth

Abstract

We describe an algorithm for change detection which is insensitive to both slow and fast temporal variations of scene illumination. Our algorithm is based on statistical decision theory by using a Bayesian approach. The goal is to detect only temporal changes which are induced by true scene changes, like motion, but not changes due to varying illumination or noise. To this end, our algorithm uses a simple illumination model which is invariant to common camera nonlinearities like gamma-nonlinearity. This is combined with a model for the influence of noise as well as an a priori model for the expected properties of the sought change masks. Key ingredients of the resulting algorithm are a suitable test statistic and an adaptive threshold mechanism. As the algorithm can be applied in a noniterative manner, it is also computationally attractive.

OriginalspracheEnglisch
Seiten640-643
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 01.01.2001
VeranstaltungIEEE International Conference on Image Processing 2001 - Thessaloniki, Griechenland
Dauer: 07.10.200110.10.2001
Konferenznummer: 58802

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressIEEE International Conference on Image Processing 2001
KurztitelICIP 2001
Land/GebietGriechenland
OrtThessaloniki
Zeitraum07.10.0110.10.01

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bayesian Illumination-Invariant Motion Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren