Bayesian Illumination Invariant Change Detection Using a Total Least Squares Test Statistic

Til Aach, Lutz Dümbgen, Rudolf Mester

Abstract

Changes in video data recorded by a static camera can be caused by structural scene changes like motion and by illumination changes. We describe an algorithm which discriminates reliably between structural changes and illumination, thus detecting only ’true’ scene changes. To this end, we derive a new test statistic for change detection based on a Total Least Squares (TLS) approach. The basic idea is to design a test to decide whether or not two vectors observed in noise are collinear. The TLS statistic reacts to structural scene changes, while it is insensitive to varying illumination. Moreover, we integrate the TLS-statistic into a Bayesian framework for change detection, which uses a priori knowledge via Markov Random Fields. The resulting change detection algorithm combines the benefits of Bayesian detection with robustness against both fast and slow variations of illumination.
OriginalspracheEnglisch
Seiten587-590
Seitenumfang4
PublikationsstatusVeröffentlicht - 01.09.2001
Veranstaltung18e Colloque GRETSI sur le Traitement du Signal et des Images - Toulouse, Frankreich
Dauer: 10.09.200113.09.2001

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress18e Colloque GRETSI sur le Traitement du Signal et des Images
Land/GebietFrankreich
OrtToulouse
Zeitraum10.09.0113.09.01

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bayesian Illumination Invariant Change Detection Using a Total Least Squares Test Statistic“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren